

uction Set

* An instruction is a binary pattern designed inside a microprocessor to

perform a specific function. The entire group of instructions, called the
instruction set, determines what functions the microprocessor can
perform. An Instruction is a command given to the computer to perform a
specified operation on given data. The instructions described are of Intel

8085. These instructions are of Intel Corporation.

°* They cannot be used by other microprocessor manufactures. The
programmer can write a program in assembly language using these

Istructions.

uction Set

* These instructions can be classified into the following five functional

categories:
* Data Transfer Instruction,
¢ Arithmetic Instructions,
* Logical Instructions,
* Branching Instructions,

* Control Instructions,

Machine Control Operations

* These instructions control machine functions such as Halt, Interrupt, or
do nothing. The microprocessor operations related to data manipulation

can be summarized in four functions:
1. Copying data
2. Performing arithmetic operations
3. Performing logical operations

4. Testing for a given condition and alerting the program sequence

Some important aspects of the instruction set are noted below:

1. In data transfer, the contents of the source are not destroyed; only the
contents of the destination are changed. The data copy instructions do not

affect the flags.

2. Arithmetic and Logical operations are performed with the contents of the
accumulator, and the results are stored in the accumulator (with some

expectations). The flags are affected according to the results.

3. Any register including the memory can be used for increment and

decrement.

4. A program sequence can be changed either conditionally or by testing for

a given data condition.

ction Set

Instruction Format

® An instruction is a command to the microprocessor to perform a given
task on a specified data. Each instruction has two parts: the first is used to
the task to be performed, called the operation code (opcode), and the
second is the data to be operated on, called the operand. The operand (or
data) can be specified in various ways. It may include 8-bit (or 16-bit)
data, an internal register, a memory location, or 8-bit (or 16-bit) address.

In some instructions, the operand is implicit.

Instruction Opcode | Operand

ction Set

Instruction Word Size

* The 8085 instruction set is classified into the following three groups

according to word size:
1. One-word or 1-byte instructions
2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

* In the 8085, "byte" and "word" are synonymous because it is an 8-bit
microprocessor. However, instructions are commonly referred to in terms

of bytes rather than words.

1- One - Byte Instructions

* A 1-byte instruction includes the opcode and operand in the same byte.

Operand(s) are internal register and are coded into the instruction. For

example:

Task Op Operand | Binary Hex
code Code Code

Copy the contents of the accumulator in | MOV | C.A 0100 1111 | 4FH

the repister C.

Add the contents of register B to the | ADD | B 1000 0000 | 80H

contents of the accumulator.

Invert (compliment) each bit m the | CMA 00101111 | 2FH

accumulator.

* These instructions are 1-byte instructions performing three different

tasks.
» In the first instruction, both operand registers are specified.

»In the second mstruction, the operand B is specified and the

accumulator 1s assumed.

> Similarly, in the third mstructzon, the accumulator is assumed to be
the implicit operand. These instructions are stored in 8- bit binary

format in memory; each requires one memory location.

2- Two — Byte Instructions

* In a two-byte instruction, the first byte specifies the operation code and
the second byte specifies the operand. Source operand is a data byte

immediately following the opcode. For example:

Task Opcode | Operand | Binary Hex Code
Code
Load an .8-b1t data | MVI A, Data SOTT 1110 3E First Byte
byte n the
accumulator. Data Second Byte
DATA

3- Three — Byte Instructions

* In a three-byte instruction, the first byte specifies the opcode, and the

following two bytes specify the 16-bit address. Note that the second byte

is the low-order address and the third byte is the high-order address.

opcode + data byte + data byte.

2085H.

Task Opcode Operand Binary code | Hex Code

Transfer the | JIMP 2085H €3 First byte
program 1100 0011

sequence to ., 85 Second Byte
the memory

location 0010 0000 20 Third Byte

Data Transfer Instruction

* The data transfer instructions move data between registers or between

memory and registers.

Copy from source to destination

MOV

Rd, Rs

M, Rs

Rd, M

This instruction copies the contents of the
source register into the destination
register, the contents of Rd, M the source
register are not altered. If one of the
operands is a memory location, its
location is specified by the contents of the
HL registers.

Example: MOV B,C or MOV B, M

Example

* Copy the content of the register C to Register H

MOV H, C

- O W »

59

Before

— m O ™

o O W >

59

39

After

= & M. =

Move immediate 8-bit

MVI

Rd, data

M, data

The 8-bit data is stored in the destination
register or memory. If the operand isa
memory location, its location is specified
by the contents of the HL registers.
Example: MVI B, 57H or MVI M, 57H

Example

* Load the register B with C1 h and the accumulator with 11 h

MVIB, Cl h

MVIA, 11h

o O W >

Before

v 5 L ™

11
Cl

- o w>
v 1)

After

Load accumulator

The contents of a memory location,
specified by a 16-bit address in the
operand, are copied to the accumulator.

LDA 16-bit address
The contents of the source are not
altered.
Example: LDA 2034H
Example

* Load the accumulator with content of memory location 2055 h

LDA 2055h
A F 2053 h
B B 2054 h
D E 2055h
H L 2056 h
Before

memory

2F

memeory
A[2ZF F 2053 h
B > 2054 h
D E 2055 h [2F
H L 2056 h

After

Store accumulator direct

The contents of the accumulator are
copied into the memory location specified
by the operand. Thisis a 3-byvte

STA 16-bit address instruction, the second byte specifies the
low-order address and the third byte
specifies the high-order address.
Example: STA 4350H

Example

* Store the content of accumulator to memory location 2056 h

STA 2056h
AlTT F 2053 b
B C 2054 h
D E 2055h | 2F
H L 2056 h

Before

I O W

After memory

Load accumulator indirect

The contents of the designated register
pair point to a memory location. This

instruction copies the contents of that

LDAX B/D Reg. pair memory location into the accumulator.
The contents of either the register pair or
the memory location are not altered.
Example: LDAX B
Example

* Load the content of memory
specify in register pair B

LDAX B

20 |66

m il e v e e

rmHEao™=

Before

location to accumulator if the address

2053 h
20541
2055 h
2056 h

memory

2F

I 0w

2F

20

56

— Mmoo =

memory

2053 h

2054 h

2055h | 2F

2056 h
After

Store accumulator Indirect

The contents of the accumulator are
copied into the memory location specified
by the contents of the operand (register

STAX Reg. pair
2L pair). The contents of the accumulator
are not altered.
Example: STAX B
Example

* Store the content of register H to memory location if the address specify

in register pair B
MOV A, H
STAX B

Load register pair immediate

LXI Reg. pair, 16-bit data

The instruction loads 16-bit data in the
register pair designated in the operand.
Example: LXI H, 2034H or LXI H,
XYZ

Example

* Copy the content of register B to the memory location 2053 h

LXI H, 2053 H
MOV M, B

Example

* Load the memory location 2053 h with data F8 h.

LXI H, 2053h
MVIM, F8 h

Load H and L registers direct

The instruction copies the contents of the
memory location pointed out by the
16-bit address into register L and copies

LHLD 16-bit address the contents of the next memory location
into register H. The contents of source
memory locations are not altered.
Example: LHLD zo040H

Example
* Load the content of the memory location 2053 h and 2054 to H and L
registers
LHLD 2053h
memory memory
A F 2053h | 72 A F 2053h |72
B C 2054h | 3C B C 2054h | 3C
D E 2055h | 2F D E 2055h | 2F
H L 2056 h H|3C |72 L 2056 h
Before After

Store H and L registers direct

The contents of register L are stored into
the memory location specified by the
16-bit address in the operand and the
contents of H register are stored into the
next memory location by incrementing
SHLD 16-bit address the operand. The contents of registers
HL are not altered. This is a 3-byte
instruction, the second byte specifies the
low-order address and the third byte
specifies the high-order address.
Example: SHLD 2470H

Example

* Store the content of the H and L registers to memory location 2053 h and
2054

SHLD 2053 h

Exchange H and L. with D and E

The contents of register H are exchanged
with the contents of register D, and the

XCHG none contents of register L are exchanged with
the contents of register E.
Example: XCHG
Example
* Swap the content registers pair D with H
XCHG
A F A K
B C B C
D|74 |CE |E D|F2 | 00 |E
H|F2 |00 |L H| 74 | CE | L
Before After

Copy H and L registers to the stack pointer

The instruction loads the contents of the
H and L registers into the stack pointer
register, the contents of the H register
provide the high-order address and the

SPHL none
contents of the L register provide the
low-order address. The contents of the H
and L registers are not altered.
Example: SPHL
Example

* Load the content of the HL register pair to stack pointer

SPHL

Push register pair onto stack

The contents of the register pair
designated in the operand are copied onto
the stack in the following sequence. The
stack pointer register is decremented and
the contents of the high- order register (B,
PUSH Reg. pair D, H, A) are copied into that location.

The stack pointer register is decremented
again and the contents of the low-order
register (C, E, L, flags) are copied to that
location.

Example: PUSHE or PUSHA

Example

* Store the content of register pair D in to stack memory
PUSH D

Pop off stack to register pair

The contents of the memory location
pointed out by the stack pointer register
are copied to the low-order register (C, E,
L, status flags) of the operand. The stack
pointer is incremented by 1 and the

FOP Reg. pair contents of that memory location are
copied to the high-order register (B, D, H,
A) of the operand. The stack pointer
register is again incremented by 1.
Example: POPHor POPA
Example

* Load the register pair D from stack memory content.

POP D

Output data from accumulator to a port with 8-bit address

ouT

8-bit port address

The contents of the accumulator are
copied into the I/0 port specified by the

operand.
Example: OUT F8H

Example

e Store the content of register C to output device port 74 h

MOV A, B

OUT 74 h
A F
B 55| C 741 | Output
D E Device
H H

Before

F

55

oW e
T O

After

55 I

74h

Qutput
Device

Input data to acecumulator from a port with 8-bit address

IN

8-bit port address

8-bit port address The contents of the
input port designated in the operand are
read and loaded into the accumulator.
Example: IN 8CH

* Load the data from output device port 74 h to accumulator

Example
IN 74 h
A F
B 55| C
D E
H H

74 h | Output
Device

Before

L 2SN

A|2E F 2E

B 55| C 741 | Output
D E Device
H H

After

